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A hybrid neural network approach to bilevel programming problems
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Abstract

A combined neural network and tabu search hybrid algorithm is proposed for solving the bilevel programming problem. To
illustrate the approach, two numerical examples are solved and the results are compared with those in the literature.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Multilevel programming [1] problems play an important role in decentralized planning for an organization in which
decision makers are arranged at hierarchical levels. This decision-making process is made from the top down with
some interactions among decision units of the organization. Multilevel problems have been applied in many areas such
as government policy, economic systems, finance, transportation and network design, and are particularly applicable
in conflict resolution.

The multilevel programming problem is not easy to solve. In fact, the problem has been proved to be NP hard.
One way to solve this problem is to use the Karush–Kuhn–Tucker conditions to reduce the problem to a one-level
complementary slackness problem. To solve this nonlinear slackness problem, Fortuny and McCarl [2] reformulated
it into a mixed 0–1 integer programming problem. In this work, this mixed integer problem is solved by the combined
use of tabu search and a neural network.

2. Bilevel programming problem

Consider the bilevel problem with linear coefficients [1,3,4]:

P1: max
x

F(x, y) = ax + by where y solves

max
y

f (x, y) = cx + dy
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s.t. Ax + By ≤ r

x, y ≥ 0

where a, c, x ∈ Rn1×1, b, d, y ∈ Rn2×1, r ∈ Rm×1, A and B are m × n1 and m × n2 matrices, respectively.
Various approaches have been proposed for solving this problem. One of them uses the Karush–Kuhn–Tucker

conditions to reduce the problem to the following one-level problem:

P2: max
x,y,w

F(x, y) = ax + by

s.t. Ax + By + u = r

wB − t = d

yt = 0

wu = 0

x, y, w, u, t ≥ 0, x, y, t ∈ Rn×1 and w, u, r ∈ Rm×1

The above P2 is nonlinear with complementary constraints: yt = 0 and wu = 0. Fortuny and McCarl [2]
reformulated the complementary slackness conditions by introducing a 0–1 vector η. Thus, a mixed integer 0–1
programming problem can be obtained as

P3: max
x,y,w

F(x, y) = ax + by

s.t.Ax + By + u = r

wB − t = d

w ≤ M(1 − η1)

y ≤ M(1 − η2)

u ≤ Mη1

t ≤ Mη2

x, y, w, u, t ≥ 0, x, y, t ∈ Rn×1, w, u, r ∈ Rm×1, and η1, η2 ∈ {0, 1}.

3. The proposed hybrid procedure

If the number of 0–1 variables is large, problem P3 cannot be solved easily. In this work, a hybrid neural network
combined with tabu search will be used to solve this problem. The suggested core solver relies on the network by
Rodriquez-Vazquez et al. [5], and the 0–1 variables are selected by a tabu strategy. The binary variables selected by
tabu strategy form the input for the neural network optimization. If the solution is infeasible, the binary variables are
marked as forbidden; otherwise, further binary variables are generated for the next iteration. The process continues
until either the tabu maximum terminal size is reached or there is no better solution in the tabu list. The procedure can
be summarized in the following five steps.

Step 1. (Initialization)
1a. Set the tabu maximum terminal size = N , the tabu list = TL, inventory list = IL, and NA (No

admittance) = 1.
1b. Set a tabu index I = 1 for tabu iteration, and the necessary neural network parameters, including

learning rate = µ, maximum time for stopping condition = T , maximum number of iterations for neural
network = MI, and penalty constant for the constraints = K .

Step 2. (The Selection of Tabu strategy)
2a. Randomly generate the input data η[I ] which is the discrete variables set from IL′ which is a

complementary infeasible variables set IL. Go to 2b.
2b. Check the input data η[I ], go to Step 3 if η[I ] is not in TL; Otherwise, repeat the sub-step 2a.

Step 3. (Neural network computation)
Utilize the input data η[I ] to solve P3 through the neural network by Rodriquez-Vazquez et al. [5] for

obtaining x, y, w, u and t. Go to Step 4.
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Step 4. (Decision rule)
4a. Check if the variables x, y, w, u and t are satisfactory. If all constraints in P2 are satisfactory, compute

F[I ] = ax + by and go to sub-step 4b; Otherwise, go to sub-step 4c.
4b. If I ≤ N and η[I ] is not in TL, record the current η[I ] and the F[I ] in the TL. Set I = I + 1 and go to the

sub-step 2a; Otherwise, go to Step 5.
4c. Record the input data η[I ] in the IL, and let I = I + 1. Go to sub-step 2a.

Step 5. (Termination)
If I ≤ N and NA ≤ TL, let NA = NA + 1 and I = I + 1. Go to Step 2a; otherwise, go to termination. The
near-optimal solution is reached with the objective value F∗ for problem P3.

The above procedure is illustrated by solving two well-known examples.

4. Numerical examples

We will demonstrate the hybrid approach by solving two well-known examples.

Example 1. A bilevel programming problem [3].

max
x1

f1 = −2x1 + 11x2 (upper level)

where x2 solves

max
x2

f2 = −x1 − 3x2 (lower level)

s.t.

x1 − 2x2 ≤ 4,

2x1 − x2 ≤ 24,

3x1 + 4x2 ≤ 96,

x1 + 7x2 ≤ 126,

−4x1 + 5x2 ≤ 65,

x1 + 4x2 ≥ 8,

x1, x2 ≥ 0.

After applying the Karush–Kuhn–Tucker transformation and the concept due to Fortuny and McCarl [2], the above
problem reduced to a problem similar to Problem P3. The above-proposed algorithm was used to solve this problem.

The selection of the parameters for the neural network and the tabu list are important factors, which influence the
performance of the procedure. The penalty parameter is chosen as 1 for simplification, and the learning rate is set as
0.001 or 0.0001. The stopping condition is set at 10−6, or |norm(x(k + 1)) − norm(x(k))| < 10−6. The maximum
number of iterations is 50,000 and the length of the tabu list is chosen as 7, and it is empty initially. The MATLAB [6]
software with a personal computer (CPU: Intel Pentium 3.2 GHz, RAM: 512 MB) was used to solve the problem. The
best solution obtained is (x1∗, x2∗) = (17.4500, 10.9080) with ( f1∗, f2∗) = (85.085500, −50.1740). The results are
very near those of Shih et al. [7]. The results based on different penalty values are listed in Table 1.

In Table 1, a couple of solutions are listed under different penalty values. For K = 1, the tabu list is empty, because
the solution will not converge to a stable point after 50,000 iterations. Stable solutions were obtained at around 50,000
iterations with penalty value K = 2, 5, 10. When K = 20, the tabu list is also null and the neural network trajectory
begins to oscillate.

Example 2. A bilevel decentralized system with a center at the upper level and three independent divisions at the
lower level [8].

max
x1

f1 = x1 + x2 + 2x3 + x4 (upper level)
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Table 1
Computational results with various penalty values, K , Example 1

K Tabu list Binary variable set Solution

1 – – No feasible solution

2 List 1 [0 0 0 1 1 0 0] x1 = 0.0000,
x2 = 2.0000,
f1 = 22.0000

2 List 2 [0 1 1 1 1 1 0] x1 = 5.3028,
x2 = 17.2410,
f1 = 179.057900

2 List 3 [0 1 1 0 0 1 1] x1 = 9.8780,
x2 = 16.5900,
f1 = 162.709500

2 List 4 [1 0 1 1 1 1 0] x1 = 17.4500,
x2 = 10.9080,
f1 = 85.085500

5 List 1 [0 0 0 1 1 0 0] x1 = 0,
x2 = 2.0000,
f1 = 22.0000

5 List 2 [1 0 1 1 1 1 0] x1 = 17.4500,
x2 = 10.9080,
f1 = 85.085500

10 List 1 [0 0 0 1 1 0 0] x1 = 0,
x2 = 2.0000,
f1 = 22.0000

10 List 2 [1 0 1 1 1 1 0] x1 = 17.4500,
x2 = 10.9080,
f1 = 85.085500

20 – – No feasible solution

Note: Tabu list set at 7.

where x2, x3, and x4 solve
max

x2
f21 = x1 + 3x2 + x3 + x4; (lower level)

max
x3

f22 = x1 + x2 + 3x3 + x4; (lower level)

max
x4

f23 = x1 + x2 + x3 + 3x4; (lower level)

s.t.

3x1 + 3x2 ≤ 30, 2x1 + x2 ≤ 20,

x3 ≤ 10, x3 + x4 ≤ 15,

x4 ≤ 10, x1 + 2x2 + 2x3 + x4 ≤ 40,

x1, x2, x3, and x4 ≥ 0.

Following the same procedure of Example 1, the bilevel decentralized problem will be first reformulated as an
unconstrained optimization problem, and then solved using the MATLAB [6] software on a personal computer
with the length of tabu list set at 7. With M = 1000, K = 5 and µ = 0.0001, the solution obtained is
(x1∗, x2∗, x3∗, x4∗) = (5.0004, 4.9996, 10.0000, 5.0000) with objective f1∗ = 35.0002 and ( f21∗, f22∗, f23∗) =

(34.9992, 45.0000, 35.0000). The solution is quite close to that of Anandalingam’s [8]. A table similar to Table 1
was obtained with different penalty functions. However, due to space limitations, this table is omitted. No feasible
solutions were obtained for K = 1 or 20.
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5. Discussions

Besides tabu search, other algorithms such as the branch and bound and the genetic algorithms could also be used
to form the desired hybrid approach. In a previous work [7], an augmented Lagrange neural network and a branch
and bound tree were combined to solve the multilevel programming problem. The problem is that the branch and
bound tree usually requires exhaustive enumeration. For Example 1 with seven binary variables, the computation may
take 27 tests to obtain the solution using the branch and bound algorithm. The tabu strategy requires the same tests in
the worst cases; however, in general, the best solution is obtained with only 40–60 tabu iterations. Furthermore, the
current approach requires less than 15 × 104 iterations in the neural network computation compared to the sometimes
106 iterations in the previous paper [7].

We also tried to use the genetic algorithm and neural network combination to solve the multilevel problem. We
discovered that the initial population size is the key to computational efficiency. With the same example, Example 1,
the solution is not easily obtained if the initial population size is chosen as 10. In general, in order to generate enough
chromosomes, the population size must equal to or larger than half of the total variables sets (27/2). Thus, 26 iterations
will be required to generate the initial population size. Compared to tabu search, the genetic algorithm is not an
attractive option.

In conclusion, the proposed approach is fairly efficient compared to the previous branch and bound hybrid
approach [7]. The number of iterations is much less and the time needed for 0–1 variables search is also short. The
approach would be good for solving general bilevel programming problems.
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